80 research outputs found

    Protein domains as units of genetic transfer

    Full text link
    Genomes evolve as modules. In prokaryotes (and some eukaryotes), genetic material can be transferred between species and integrated into the genome via homologous or illegitimate recombination. There is little reason to imagine that the units of transfer correspond to entire genes; however, such units have not been rigorously characterized. We examined fragmentary genetic transfers in single-copy gene families from 144 prokaryotic genomes and found that breakpoints are located significantly closer to the boundaries of genomic regions that encode annotated structural domains of proteins than expected by chance, particularly when recombining sequences are more divergent. This correlation results from recombination events themselves and not from differential nucleotide substitution. We report the first systematic study relating genetic recombination to structural features at the protein level

    Evidence, Content and Corroboration and the Tree of Life

    Get PDF
    We examine three critical aspects of Popper’s formulation of the ‘Logic of Scientific Discovery’—evidence, content and degree of corroboration—and place these concepts in the context of the Tree of Life (ToL) problem with particular reference to molecular systematics. Content, in the sense discussed by Popper, refers to the breadth and scope of existence that a hypothesis purports to explain. Content, in conjunction with the amount of available and relevant evidence, determines the testability, or potential degree of corroboration, of a statement; content distinguishes scientific hypotheses from metaphysical assertions. Degree of corroboration refers to the relative and tentative confidence assigned to one hypothesis over another, based upon the performance of each under critical tests. Here we suggest that systematists attempt to maximize content and evidence to increase the potential degree of corroboration in all phylogenetic endeavors. Discussion of this “total evidence” approach leads to several interesting conclusions about generating ToL hypotheses

    Reassessment of the Lineage Fusion Hypothesis for the Origin of Double Membrane Bacteria

    Get PDF
    In 2009, James Lake introduced a new hypothesis in which reticulate phylogeny reconstruction is used to elucidate the origin of Gram-negative bacteria (Nature 460: 967–971). The presented data supported the Gram-negative bacteria originating from an ancient endosymbiosis between the Actinobacteria and Clostridia. His conclusion was based on a presence-absence analysis of protein families that divided all prokaryotes into five groups: Actinobacteria, Double Membrane bacteria (DM), Clostridia, Archaea and Bacilli. Of these five groups, the DM are by far the largest and most diverse group compared to the other groupings. While the fusion hypothesis for the origin of double membrane bacteria is enticing, we show that the signal supporting an ancient symbiosis is lost when the DM group is broken down into smaller subgroups. We conclude that the signal detected in James Lake's analysis in part results from a systematic artifact due to group size and diversity combined with low levels of horizontal gene transfer.Exobiology Program (U.S.) (Grant NNX08AQ10G)Assembling the Tree of Life (Program) (Grant DEB 0830024

    PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To effectively apply evolutionary concepts in genome-scale studies, large numbers of phylogenetic trees have to be automatically analysed, at a level approaching human expertise. Complex architectures must be recognized within the trees, so that associated information can be extracted.</p> <p>Results</p> <p>Here, we present a new software library, PhyloPattern, for automating tree manipulations and analysis. PhyloPattern includes three main modules, which address essential tasks in high-throughput phylogenetic tree analysis: node annotation, pattern matching, and tree comparison. PhyloPattern thus allows the programmer to focus on: i) the use of predefined or user defined annotation functions to perform immediate or deferred evaluation of node properties, ii) the search for user-defined patterns in large phylogenetic trees, iii) the pairwise comparison of trees by dynamically generating patterns from one tree and applying them to the other.</p> <p>Conclusion</p> <p>PhyloPattern greatly simplifies and accelerates the work of the computer scientist in the evolutionary biology field. The library has been used to automatically identify phylogenetic evidence for domain shuffling or gene loss events in the evolutionary histories of protein sequences. However any workflow that relies on phylogenetic tree analysis, could be automated with PhyloPattern.</p

    A new, fast algorithm for detecting protein coevolution using maximum compatible cliques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The MatrixMatchMaker algorithm was recently introduced to detect the similarity between phylogenetic trees and thus the coevolution between proteins. MMM finds the largest common submatrices between pairs of phylogenetic distance matrices, and has numerous advantages over existing methods of coevolution detection. However, these advantages came at the cost of a very long execution time.</p> <p>Results</p> <p>In this paper, we show that the problem of finding the maximum submatrix reduces to a multiple maximum clique subproblem on a graph of protein pairs. This allowed us to develop a new algorithm and program implementation, MMMvII, which achieved more than 600× speedup with comparable accuracy to the original MMM.</p> <p>Conclusions</p> <p>MMMvII will thus allow for more more extensive and intricate analyses of coevolution.</p> <p>Availability</p> <p>An implementation of the MMMvII algorithm is available at: <url>http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php</url></p

    Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers across Prokaryotic Lineages

    Get PDF
    The evolutionary history of biological pathways is of general interest, especially in this post-genomic era, because it may provide clues for understanding how complex systems encoded on genomes have been organized. To explain how pathways can evolve de novo, some noteworthy models have been proposed. However, direct reconstruction of pathway evolutionary history both on a genomic scale and at the depth of the tree of life has suffered from artificial effects in estimating the gene content of ancestral species. Recently, we developed an algorithm that effectively reconstructs gene-content evolution without these artificial effects, and we applied it to this problem. The carefully reconstructed history, which was based on the metabolic pathways of 160 prokaryotic species, confirmed that pathways have grown beyond the random acquisition of individual genes. Pathway acquisition took place quickly, probably eliminating the difficulty in holding genes during the course of the pathway evolution. This rapid evolution was due to massive horizontal gene transfers as gene groups, some of which were possibly operon transfers, which would convey existing pathways but not be able to generate novel pathways. To this end, we analyzed how these pathways originally appeared and found that the original acquisition of pathways occurred more contemporaneously than expected across different phylogenetic clades. As a possible model to explain this observation, we propose that novel pathway evolution may be facilitated by bidirectional horizontal gene transfers in prokaryotic communities. Such a model would complement existing pathway evolution models

    Phylogenomic Analysis of Marine Roseobacters

    Get PDF
    Background: Members of the Roseobacter clade which play a key role in the biogeochemical cycles of the ocean are diverse and abundant, comprising 10–25 % of the bacterioplankton in most marine surface waters. The rapid accumulation of whole-genome sequence data for the Roseobacter clade allows us to obtain a clearer picture of its evolution. Methodology/Principal Findings: In this study about 1,200 likely orthologous protein families were identified from 17 Roseobacter bacteria genomes. Functional annotations for these genes are provided by iProClass. Phylogenetic trees were constructed for each gene using maximum likelihood (ML) and neighbor joining (NJ). Putative organismal phylogenetic trees were built with phylogenomic methods. These trees were compared and analyzed using principal coordinates analysis (PCoA), approximately unbiased (AU) and Shimodaira–Hasegawa (SH) tests. A core set of 694 genes with vertical descent signal that are resistant to horizontal gene transfer (HGT) is used to reconstruct a robust organismal phylogeny. In addition, we also discovered the most likely 109 HGT genes. The core set contains genes that encode ribosomal apparatus, ABC transporters and chaperones often found in the environmental metagenomic and metatranscriptomic data. These genes in the core set are spread out uniformly among the various functional classes and biological processes. Conclusions/Significance: Here we report a new multigene-derived phylogenetic tree of the Roseobacter clade. Of particular interest is the HGT of eleven genes involved in vitamin B12 synthesis as well as key enzynmes fo

    Phylogenetic Detection of Recombination with a Bayesian Prior on the Distance between Trees

    Get PDF
    Genomic regions participating in recombination events may support distinct topologies, and phylogenetic analyses should incorporate this heterogeneity. Existing phylogenetic methods for recombination detection are challenged by the enormous number of possible topologies, even for a moderate number of taxa. If, however, the detection analysis is conducted independently between each putative recombinant sequence and a set of reference parentals, potential recombinations between the recombinants are neglected. In this context, a recombination hotspot can be inferred in phylogenetic analyses if we observe several consecutive breakpoints. We developed a distance measure between unrooted topologies that closely resembles the number of recombinations. By introducing a prior distribution on these recombination distances, a Bayesian hierarchical model was devised to detect phylogenetic inconsistencies occurring due to recombinations. This model relaxes the assumption of known parental sequences, still common in HIV analysis, allowing the entire dataset to be analyzed at once. On simulated datasets with up to 16 taxa, our method correctly detected recombination breakpoints and the number of recombination events for each breakpoint. The procedure is robust to rate and transition∶transversion heterogeneities for simulations with and without recombination. This recombination distance is related to recombination hotspots. Applying this procedure to a genomic HIV-1 dataset, we found evidence for hotspots and de novo recombination

    Identifying Currents in the Gene Pool for Bacterial Populations Using an Integrative Approach

    Get PDF
    The evolution of bacterial populations has recently become considerably better understood due to large-scale sequencing of population samples. It has become clear that DNA sequences from a multitude of genes, as well as a broad sample coverage of a target population, are needed to obtain a relatively unbiased view of its genetic structure and the patterns of ancestry connected to the strains. However, the traditional statistical methods for evolutionary inference, such as phylogenetic analysis, are associated with several difficulties under such an extensive sampling scenario, in particular when a considerable amount of recombination is anticipated to have taken place. To meet the needs of large-scale analyses of population structure for bacteria, we introduce here several statistical tools for the detection and representation of recombination between populations. Also, we introduce a model-based description of the shape of a population in sequence space, in terms of its molecular variability and affinity towards other populations. Extensive real data from the genus Neisseria are utilized to demonstrate the potential of an approach where these population genetic tools are combined with an phylogenetic analysis. The statistical tools introduced here are freely available in BAPS 5.2 software, which can be downloaded from http://web.abo.fi/fak/mnf/mate/jc/software/baps.html

    GRISOTTO: A greedy approach to improve combinatorial algorithms for motif discovery with prior knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position-specific priors (PSP) have been used with success to boost EM and Gibbs sampler-based motif discovery algorithms. PSP information has been computed from different sources, including orthologous conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the gain of combining priors from different sources has not yet been studied.</p> <p>Results</p> <p>We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a greedy procedure that uses prior information. PSP's from different sources are combined into a scoring criterion that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the state-of-the-art approaches for the same task. We also show that PSP's improve GRISOTTO ability to retrieve motifs from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different technology and for a higher eukaryote.</p> <p>Conclusions</p> <p>The conclusions of this work are twofold. First, post-processing the output of combinatorial algorithms by incorporating prior information leads to a very efficient and effective motif discovery method. Second, combining priors from different sources is even more beneficial than considering them separately.</p
    corecore